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vi

This International Metric Version differs from the US version of A First Course in Dif-
ferential Equations with Modeling Applications, Twelfth Edition, as follows:

The units of measurement used in most of the examples and exercises have been 
converted from U.S. Customary Systems (USCS) of units (also referred to as Eng-
lish, or Imperial units) to Metric units.

This Metric Version includes conversion tables to reference as you work through 
the related applications and exercises.

To The Student

Authors of books live with the hope that someone actually reads them. Contrary to 
what you might believe, almost everything in a typical college-level mathematics text 
is written for you and not the instructor. True, the topics covered in the text are chosen 
to appeal to instructors because they make the decision on whether to use it in their 
classes, but everything written in it is aimed directly at you, the student. So I want 
to encourage you—no, actually I want to tell you—to read this textbook! But do not 
read this text as you would a novel; you should not read it fast and you should not skip 
anything. Think of it as a workbook. By this I mean that mathematics should always 
be read with pencil and paper at the ready because, most likely, you will have to work 
your way through the examples and the discussion. Before attempting any problems in 
the section exercise sets, work through all the examples in that section. The examples 
are constructed to illustrate what I consider the most important aspects of the section, 
and therefore, reflect the procedures necessary to work most of the problems. When 
reading an example, copy it down on a piece of paper and do not look at the solution in 
the book. Try working it, then compare your results against the solution given, and, if 
necessary resolve any differences. I have tried to include most of the important steps in 
each example, but if something is not clear you should always try—and here is where 
the pencil and paper come in again—to fill in the details or missing steps. This may 
not be easy, but it is part of the learning process. The accumulation of facts followed by 
the slow assimilation of understanding simply cannot be achieved without a struggle.

Specifically for you, a Student Solutions Manual (SSM) is available as an op-
tional supplement. In addition to containing solutions of selected problems from the 
exercises sets, the SSM contains hints for solving problems, extra examples, and a re-
view of those areas of algebra and calculus that I feel are particularly important to the 
successful study of differential equations. Bear in mind you do not have to purchase 
the SSM; you can review the appropriate mathematics from your old precalculus or 
calculus texts.

In conclusion, I wish you good luck and success. I hope you enjoy the text and 
the course you are about to embark on—as an undergraduate math major it was one 
of my favorites because I liked mathematics that connected with the physical world. 
If you have any comments, or if you find any errors as you read/work your way 
through the text, or if you come up with a good idea for improving either it or the 
SSM, please feel free to contact me through Cengage Learning.

Dennis G. Zill
Los Angeles, CA

Preface for this Metric Edition
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Preface for this Metric Edition vii

To The Instructor

In case you are examining this text for the first time, A First Course in Differen-
tial Equations with Modeling Applications, Twelfth Edition, is intended for a one-
semester or one-quarter course in ordinary differential equations. The longer version 
of the text, Differential Equations with Boundary-Value Problems, Tenth Edition, 
can be used for either a one- or two-semester course that covers ordinary and partial 
differential equations. This text contains six additional chapters. For a one-semester 
course, it is assumed that the students have successfully completed at least two semes-
ters of calculus. Since you are reading this, undoubtedly you have already examined 
the table of contents for the topics that are covered. You will not find a “suggested  
syllabus” in this preface; I will not pretend to be so wise as to tell other teachers 
what to teach. I feel that there is plenty of material here to choose from and to form 
a course to your liking. The text strikes a reasonable balance between the analyti-
cal, qualitative, and quantitative approaches to the study of differential equations. 
As far as my “underlying philosophy” goes, it is this: An undergraduate text should 
be written with the students’ understanding kept firmly in mind, which means to 
me that the material should be presented in a straightforward, readable, and help-
ful manner, while keeping the level of theory consistent with the notion of a “first 
course.”

For those who are familiar with the previous editions, I would like to mention 
a few improvements made in this edition. Many exercise sets have been updated by 
the addition of new problems. Some of these problems involve new and, I think, 
interesting mathematical models. Additional examples, figures, and remarks have 
been added to many sections. Throughout the text I have given a greater emphasis 
to the concepts of piecewise-linear differential equations and solutions that involve 
nonelementary integrals. Finally, the table of Laplace transforms in Appendix C has 
been expanded.

Student Resources
 ● Student Solutions Manual (SSM), prepared by Roberto Martinez  

(ISBN 979-8-214-03824-7, accompanies A First Course in Differential 
Equations with Modeling Applications, Twelfth Edition, and ISBN 978-0-357-
76058-1 accompanies Differential Equations with Boundary-Value Problems, 
Tenth Edition) provides important review material from algebra and calculus, 
the solution of every third problem in each exercise set (with the exception 
of the Discussion Problems and Computer Lab Assignments), relevant 
command syntax for the computer algebra systems Mathematica and Maple, 
and lists of important concepts, as well as helpful hints on how to start 
certain problems.

 ● WebAssign for A First Course in Differential Equations with Modeling 
Applications, Twelfth Edition. WebAssign provides you with the tools you 
need to be successful in differential equations. Course materials and resources 
have been specially customized for you by your instructor, giving you an array 
of study tools to get a true understanding of course concepts and achieve better 
grades.

Instructor Resources
 ● Complete Solutions Manual (CSM), prepared by Roberto Martinez, provides 

complete worked-out solutions for all problems in the text. It is available through 
the Instructor Companion website at cengage.com.

 ● Cengage Learning Testing Powered by Cognero is a flexible online system 
that allows you to author, edit, and manage test bank content, create multiple 
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viii Preface for this Metric Edition

test versions in an instant, and deliver tests from your learning management 
system (LMS), your classroom, or wherever you want. This is available online 
at www.cengage.com/login.

 ● WebAssign for A First Course in Differential Equations with Modeling 
Applications, Twelfth Edition. Built by educators, WebAssign provides 
flexible settings at every step to customize your course with online activities 
and secure testing to meet learners’ unique needs. Students get everything in 
one place, including rich content and study resources designed to fuel deeper 
understanding, plus access to a dynamic, interactive ebook. Proven to help 
hone problem-solving skills, WebAssign helps you help learners in any course 
format.
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The words differential and equations suggest solving some kind of equation 

that contains derivatives y9, y0, Á .  Analogous to a course in algebra, in which a 

good amount of time is spent solving equations such as x2 1 5x 1 4 5 0 for the 

unknown number x, in this course one of our tasks will be to solve differential 

equations such as y0 1 2y9 1 y 5 0 for an unknown function y 5 f(x). As the 

course unfolds, you will see there is more to the study of differential equations 

than just mastering methods that mathematicians over past centuries devised to 

solve them. But first things first. In order to read, study, and be conversant in a 

specialized subject you have to learn some of the terminology of that discipline. 

This is the thrust of the first two sections of this chapter. In the last section we 

briefly examine the link between differential equations and the real world.

1.1 Definitions and Terminology 

1.2 Initial-Value Problems 

1.3 Differential Equations as 
Mathematical Models

Chapter 1 In Review

Chapter 

1
Introduction to Differential 
Equations

Christian Bertrand/Shutterstock.com
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To talk about them, we shall classify differential equations according to type, order, 
and linearity.

Classification by Type If a differential equation contains only ordinary deriva-
tives of one or more unknown functions with respect to a single independent variable, 
it is said to be an ordinary differential equation (ODE). An equation involving 
partial derivatives of one or more unknown functions of two or more independent 
variables is called a partial differential equation (PDE). Our first example illus-
trates several of each type of differential equation.

 Example 1  Types of Differential Equations

(a) The equations
 an ODE can contain more 
 than one unknown function
 p p

 
dy

dx
1 5y 5 ex, d2y

dx2 2
dy

dx
1 6y 5 0, and dx

dt
1

dy

dt
5 2x 1 y (2)

are examples of ordinary differential equations.

(b) The following equations are partial differential equations:*

 
−2u

−x2 1
−2u

−y2 5 0, −2u

−x2 5
−2u

−t2
2 2

−u

−t
, −u

−y
5 2

−v

−x
. (3)

*Except for this introductory section, only ordinary differential equations are considered in A First Course 
in Differential Equations with Modeling Applications, Twelfth Edition. In that text the word equation 
and the abbreviation DE refer only to ODEs. Partial differential equations or PDEs are considered in the 
expanded volume Differential Equations with Boundary-Value Problems, Tenth Edition.

Introduction  The derivative dyydx of a function y 5 f(x) is itself another 
function f9(x) found by an appropriate rule. The exponential function y 5 e0.1x2

 is 
differentiable on the interval (2`, `) and by the Chain Rule its first derivative is 
dyydx 5 0.2xe0.1x2

. If we replace e0.1x2
 on the right-hand side of the last equation by 

the symbol y, the derivative becomes

 
dy

dx
5 0.2xy. (1)

Now imagine that a friend of yours simply hands you equation (1)—you have no idea 
how it was constructed—and asks, What is the function represented by the symbol y? 
You are now face to face with one of the basic problems in this course:

How do you solve an equation such as (1) for the function y = f(x)?

A Definition The equation that we made up in (1) is called a differential 
equation. Before proceeding any further, let us consider a more precise definition 
of this concept.

 Definitions and Terminology  

Definition 1.1.1 Differential Equation

An equation containing the derivatives of one or more unknown functions (or 
dependent variables), with respect to one or more independent variables, is 
said to be a differential equation (DE).

1.1

1.1 Definitions and Terminology 3
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Notice in the third equation that there are two unknown functions and two indepen-
dent variables in the PDE. This means u and v must be functions of two or more 
independent variables. .

Notation The German polymath Gottfried Wilhelm Leibniz (1646–1716) 
along with the English mathematician, physicist, and theologian Sir Isaac Newton 
(1643–1727) are considered to be the co-inventors of calculus. But much of the nota-
tion used today in mathematics is due to Leibniz and the Italian mathematician and 
astronomer Joseph-Louis Lagrange (1736–1813). See Figures 1.1.1–1.1.3. For 
example, the familiar symbols

dy

dx
  and  f 9(x)

are due, respectively, to Leibniz and Lagrange. Throughout this text ordinary deriva-
tives will be written using either the Leibniz notation

dy

dx
 , 

d2y

dx2  , 
d3y

dx3  , Á

or the Lagrange prime notation

y9, y0, y-, . Á

By using the latter notation, the first two differential equations in (2) can be written 
a little more compactly as y9 1 5y 5 ex and y0 2 y9 1 6y 5 0. Actually the prime 
notation is used to denote only the first three derivatives; the fourth derivative is 
written y(4) instead of y9-. In general, the nth derivative of y is written dnyydxn or 
y(n). Although less convenient to write and to typeset, the Leibniz notation has an 
advantage over the prime notation in that it clearly displays both the dependent and 
independent variables. For example, in the differential equation

d2x

dt2 1 16x 5 0

it is immediately seen that the symbol x now represents a dependent variable whereas 
the independent variable is t. You should also be aware that in physical sciences 
and engineering, Newton’s dot notation (derogatively referred to by some as the 
“flyspeck” notation) is sometimes used to denote derivatives with respect to time t. 
Thus, the differential equation

d2s

dt2 5 232  becomes  s
$

5 232.

Partial derivatives such as −2uy−x2 and −uy−t are often denoted by a subscript  
notation indicating the independent variables. For example, the first and second 
equations in (3) can be written, in turn,

uxx 1 uyy 5 0  and  uxx 5 utt 2 2ut.

Classification by Order The order of a differential equation (either ODE 
or PDE) is the order of the highest derivative in the equation. For example,

�rst ordersecond order

1 5(     )3
 2 4y 5 ex

dy
–––
dx

d 2y
––––
dx2

is a second-order ordinary differential equation. In Example 1, the first and third 
equations in (2) are first-order ODEs, whereas in (3) the first two equations are 
second-order PDEs. A first-order ordinary differential equation is sometimes written 
in the differential form

M(x, y) dx 1 N(x, y) dy 5 0.

Figure 1.1.2 Sir Isaac Newton

Figure 1.1.3 Joseph-Louis Lagrange

He
rit

ag
e 

Im
ag

e 
Pa

rtn
er

sh
ip

 L
td

/A
la

m
y 

St
oc

k 
Ph

ot
o

GL
 A

rc
hi

ve
/A

la
m

y 
St

oc
k 

Ph
ot

o

Figure 1.1.1 Gottfried Wilhelm Leibniz
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 Example 2  Differential Form of a First-Order ODE

If we assume that y is the dependent variable in a first-order ODE, then recall from 
calculus that the differential dy is defined to be dy 5 y9dx.

(a) By dividing by the differential dx an alternative form of the equation 
(y 2 x) dx 1 4x dy 5 0 is given by

y 2 x 1 4x 

dy

dx
5 0 or equivalently 4x 

dy

dx
1 y 5 x. 

(b) By multiplying the differential equation 

6xy 

dy

dx
1 x2 1 y2 5 0 

by dx we see that the equation has the alternative differential form

 (x2 1 y2) dx 1 6xy dy 5 0. .

In symbols we can express an nth-order ordinary differential equation in one 
dependent variable by the general form

 F(x,  y,  y9, . . . , y(n)) 5 0, (4)

where F is a real-valued function of n + 2 variables: x, y, y9, . . . , y(n). For both practi-
cal and theoretical reasons we shall also make the assumption hereafter that it is pos-
sible to solve an ordinary differential equation in the form (4) uniquely for the highest 
derivative y(n) in terms of the remaining n + 1 variables. The differential equation

 
dny

dxn 5 f (x, y, y9, . . . , y(n21)), (5)

where f is a real-valued continuous function, is referred to as the normal form of (4). 
Thus when it suits our purposes, we shall use the normal forms

 
dy

dx
5 f (x, y)  and  d2y

dx2 5 f (x, y, y9) 

to represent general first- and second-order ordinary differential equations.

 Example 3  Normal Form of an ODE

(a) By solving for the derivative dyydx the normal form of the first-order differential 
equation 

4x  

dy

dx
1 y 5 x is dy

dx
5

x 2 y

4x
.

(b) By solving for the derivative y0 the normal form of the second-order differential 
equation 

 y0 2 y9 1 6y 5 0 is y0 5 y9 2 6y. .

Classification by Linearity An nth-order ordinary differential equation (4) is said 
to be linear if F is linear in y, y9, . . . , y(n). This means that an nth-order ODE is linear 
when (4) is an(x)y(n) + an−1(x)y(n−1) + Á  + a1(x)y9 + a0(x)y − g(x) = 0 or

 an(x) 
dny

dxn 1 an21(x) 
dn21y

dxn21 1 Á 1 a1(x) 
dy

dx
1 a0(x)y 5 g(x). (6)

Two important special cases of (6) are linear first-order (n 5 1) and linear second-
order (n = 2) DEs:

  a1(x) 
dy

dx
1 a0(x)y 5 g(x)  and  a2(x) 

d2y

dx2 1 a1(x) 
dy

dx
1 a0(x)y 5 g(x). (7)

1.1 Definitions and Terminology 5
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In the additive combination on the left-hand side of equation (6) we see that the char-
acteristic two properties of a linear ODE are as follows:

 ● The dependent variable y and all its derivatives y9, y0, . . . , y(n) are of the 
first degree, that is, the power of each term involving y is 1.

 ● The coefficients a0, a1, . . . , an of y, y9, . . . , y(n) depend at most on the 
independent variable x.

A nonlinear ordinary differential equation is simply one that is not linear. Nonlinear 
functions of the dependent variable or its derivatives, such as sin y or ey9, cannot 
appear in a linear equation.

 Example 4  Linear and Nonlinear ODEs

(a) The equations

(y 2 x) dx 1 4x dy 5 0, y0 2 2y 1 y 5 0, x3 
d3y

dx3 1 x 
dy

dx
2 5y 5 ex

are, in turn, linear first-, second-, and third-order ordinary differential equations. We 
have just demonstrated in part (a) of Example 2 that the first equation is linear in the 
variable y by writing it in the alternative form 4xy9 + y = x. 

(b) The equations

 

nonlinear term:
coef�cient depends on y

nonlinear term:
nonlinear function of y

nonlinear term:
power not 1

(1 2 y)y9 1 2y 5 ex, 1 sin y 5 0, and
d 2y
––––
dx2 1 y 2 5 0

d 4y
––––
dx 4

are examples of nonlinear first-, second-, and fourth-order ordinary differential equa-
tions, respectively.

(c) By using the quadratic formula the nonlinear first-order differential equation 
(y9)2 1 2xy9 2 y 5 0 is equivalent to two nonlinear first-order equations in normal form

 y9 5 2x 1 Ïx2 1 y  and  y9 5 2x 2 Ïx2 1 y. .

Solutions As was stated on page 2, one of the goals in this course is to solve, or 
find solutions of, differential equations. In the next definition we consider the con-
cept of a solution of an ordinary differential equation.

In other words, a solution of an nth-order ordinary differential equation (4) is a 
function f that possesses at least n derivatives and for which

 F(x, f(x), f9(x), . . . , f(n)(x)) 5 0  for all x in I. 

We say that f satisfies the differential equation on I. For our purposes we shall also 
assume that a solution f is a real-valued function. In our introductory discussion we 
saw that y 5 e0.1x2

 is a solution of dyydx = 0.2xy on the interval (−`, `).
Occasionally, it will be convenient to denote a solution by the alternative 

symbol y(x).

Definition 1.1.2 Solution of an ODE

Any function f, defined on an interval I and possessing at least n derivatives 
that are continuous on I, which when substituted into an nth-order ordinary 
differential equation reduces the equation to an identity, is said to be a solution 
of the equation on the interval.

6 Chapter 1 Introduction to Differential Equations

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1

x

y

1

(a) function y 5 1/x, x ? 0

(b) solution y 5 1/x, (0, ∞)

1

x

y

1

Figure 1.1.4 In Example 6 the function 
y = 1yx is not the same as the solution 
y = 1yx

Interval of Definition You cannot think solution of an ordinary differential 
equation without simultaneously thinking interval. The interval I in Definition 1.1.2 
is variously called the interval of definition, the interval of existence, the interval 
of validity, or the domain of the solution and can be an open interval (a, b), a closed 
interval [a, b], an infinite interval (a, `), and so on.

 Example 5  Verification of a Solution

Verify that the indicated function is a solution of the given differential equation on 
the interval (−`, `).

(a) 
dy

dx
5 xy1/2; y 5 1

16 x4  (b) y0 2 2y9 1 y 5 0; y 5 xex

Solution One way of verifying that the given function is a solution is to see, after 
substituting, whether each side of the equation is the same for every x in the interval.

(a) From

left{hand side:    
dy

dx
5

1

16
 (4 ? x3) 5

1

4
 x3, 

right{hand side: xy1/2 5 x ? 1 1

16
 x42

1/2

5 x ? 11

4
 x22 5

1

4
 x3, 

we see that each side of the equation is the same for every real number x. Note that 
y1/2 5 1

4 x2 is, by definition, the nonnegative square root of 1
16 x4.

(b) From the derivatives y9 = xex + ex and y0 = xex + 2ex we have, for every real 
number x,

left{hand side:    y0 2 2y9 1 y 5 (xex 1 2ex) 2 2(xex 1 ex) 1 xex 5 0, 

right{hand side: 0. .

Note, too, that each differential equation in Example 5 possesses the constant 
solution y 5 0, −` < x < `. A solution of a differential equation that is identically 
zero on an interval I is said to be a trivial solution.

Solution Curve The graph of a solution f of an ODE is called a solution curve. 
Since f is a differentiable function, it is continuous on its interval I of defini tion. 
Thus there may be a difference between the graph of the function f and the graph of 
the solution f. Put another way, the domain of the function f need not be the same 
as the interval I of definition (or domain) of the solution f. Example 6 illustrates the 
difference.

 Example 6  Function versus Solution

(a) The domain of y = 1yx, considered simply as a function, is the set of all real 
numbers x except 0. When we graph y = 1yx, we plot points in the xy-plane cor-
responding to a judicious sampling of numbers taken from its domain. The ratio-
nal  function y = 1yx is discontinuous at 0, and its graph, in a neighborhood of 
the origin, is given in Figure 1.1.4(a). The function y = 1yx is not differentiable at 
x = 0, since the y-axis (whose equation is x = 0) is a vertical asymptote of the graph.

(b) Now y = 1yx is also a solution of the linear first-order differential equation 
xy9 + y = 0. (Verify.) But when we say that y = 1yx is a solution of this DE, we 
mean that it is a function defined on an interval I on which it is differentiable and 
satisfies the equation. In other words, y = 1yx is a solution of the DE on any interval 

1.1 Definitions and Terminology 7
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that does not contain 0, such as (−3, −1), _12, 10+, (−`, 0), or (0, `). Because the 
solution curves defined by y = 1yx for −3 < x < −1 and 1

2 , x , 10 are simply 
segments, or pieces, of the solution curves defined by y = 1yx for −` < x < 0 and 
0 < x < `, respectively, it makes sense to take the interval I to be as large as pos-
sible. Thus we take I to be either (−`, 0) or (0, `). The solution curve on (0, `) is 
shown in Figure 1.1.4(b). .

Explicit and Implicit Solutions You should be familiar with the terms explicit 
functions and implicit functions from your study of calculus. A solution in which 
the dependent variable is expressed solely in terms of the independent variable and 
constants is said to be an explicit solution. For our purposes, let us think of an 
explicit solution as an explicit formula y = f(x) that we can manipulate, evaluate, 
and differentiate using the standard rules. We have just seen in the last two examples 
that y 5 1

16 x4, y = xex, and y = 1yx are, in turn, explicit solutions of dyydx = xy1/2, 
y0 − 2y9 + y = 0, and xy9 + y = 0. Moreover, the trivial solution y = 0 is an explicit 
solution of all three equations. When we get down to the business of actually solving 
some ordinary differential equations, you will see that methods of solution do not 
always lead directly to an explicit solution y = f(x). This is particularly true when 
we attempt to solve nonlinear first-order differential equations. Often we have to be 
content with a relation or expression G(x, y) = 0 that defines a solution f implicitly.

It is beyond the scope of this course to investigate the conditions under which a 
relation G(x, y) = 0 defines a differentiable function f. So we shall assume that if 
the formal implementation of a method of solution leads to a relation G(x, y) = 0, 
then there exists at least one function f that satisfies both the relation (that is, 
G(x, f(x)) = 0) and the differential equation on an interval I. If the implicit solution 
G(x, y) = 0 is fairly simple, we may be able to solve for y in terms of x and obtain 
one or more explicit solutions. See (iv) in the Remarks.

 Example 7  Verification of an Implicit Solution

The relation x2 + y2 = 25 is an implicit solution of the differential equation

 
dy

dx
5 2

x
y

 (8)

on the open interval (−5, 5). By implicit differentiation we obtain

 
d

dx
 x2 1

d

dx
 y2 5

d

dx
 25  or  2x 1 2y 

dy

dx
5 0. (9)

Solving the last equation in (9) for the symbol dyydx gives (8). Moreover, solving 
x2 + y2 = 25 for y in terms of x yields y 5 6Ï25 2 x2. The two functions
y 5 f1(x) 5 Ï25 2 x2 and y 5 f2(x) 5 2Ï25 2 x2 satisfy the relation (that is, 
x2 + f1

2 = 25 and x2 + f2
2 = 25) and are explicit solutions defined on the interval 

(−5, 5). The solution curves given in Figures 1.1.5(b) and 1.1.5(c) are segments of the 
graph of the implicit solution in Figure 1.1.5(a). 

Definition 1.1.3 Implicit Solution of an ODE

A relation G(x, y) = 0 is said to be an implicit solution of an ordinary dif-
ferential equation (4) on an interval I, provided that there exists at least one 
function f that satisfies the relation as well as the differential equation on I.

8 Chapter 1 Introduction to Differential Equations
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Figure 1.1.6 Some solutions of DE in 
part (a) of Example 8

y

x

c . 0

c , 0

c 5 0

Because the distinction between an explicit solution and an implicit solution 
should be intuitively clear, we will not belabor the issue by always saying, “Here is 
an explicit (implicit) solution.”

Families of Solutions The study of differential equations is similar to that of 
integral calculus. When evaluating an antiderivative or indefinite integral in calculus, 
we use a single constant c of integration. Analogously, we shall see in Chapter 2 that 
when solving a first-order differential equation F(x, y, y9) 5 0 we usually obtain a 
solution containing a single constant or parameter c. A solution of F(x, y, y9) 5 0 con-
taining a constant c is a set of solutions Gsx, y, cd 5 0 called a one-parameter family 
of solutions. When solving an nth-order differential equation F(x, y, y9, Á , y(n)) 5 0 
we seek an n-parameter family of solutions G(x, y, c1, c2, Á , cn) 5 0. This means 
that a single differential equation can possess an infinite number of solutions cor-
responding to an unlimited number of choices for the parameter(s). A solution of a 
differential equation that is free of parameters is called a particular solution.

The parameters in a family of solutions such as G(x, y, c1, c2, Á , cn) 5 0 are 
arbitrary up to a point. For example, proceeding as in (9) a relation x2 1 y2 5 c 
formally satisfies (8) for any constant c. However, it is understood that the relation 
should always make sense in the real number system; thus, if c 5 225 we cannot say 
that x2 1 y2 5 225 is an implicit solution of the differential equation.

 Example 8  Particular Solutions

(a) For all real values of c, the one-parameter family y 5 cx 2 x cos x is an explicit 
solution of the linear first-order equation 

xy9 2 y 5 x2 sin x

on the interval (−`, `). (Verify.) Figure 1.1.6 shows the graphs of some particular 
solutions in this family for various choices of c. The solution y = −x cos x, the blue 
graph in the figure, is a particular solution corresponding to c = 0. 

(b) The two-parameter family y = c1ex + c2xex is an explicit solution of the linear 
second-order equation 

y0 − 2y9 + y = 0

in part (b) of Example 5. (Verify.) In Figure 1.1.7 we have shown seven of the “dou-
ble infinity” of solutions in the family. The solution curves in red, green, and blue 
are the graphs of the particular solutions y = 5xex (cl = 0, c2 = 5), y = 3ex (cl = 3, 
c2 = 0), and y = 5ex − 2xex (c1 = 5, c2 = −2), respectively. .

Figure 1.1.5 An implicit solution and two explicit solutions of (8) in Example 7 .

y

x
5

5

(b) explicit solution

y1 5 2 2Ï25 x2, 5 , x , 5

y

x

5

5

25

(c) explicit solution

y2 5 2Ï25 2 x2, 25 , x , 5

y

x
5

5

x2 1 y2 5 25

(a) implicit solution(a)

Figure 1.1.7 Some solutions of DE in 
part (b) of Example 8

y

x
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